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We study influence of scalar fields on nonlinear electrodynamics spacetimes. The investigation is carried
out using both test and gravitating scalar fields. After revisiting Einstein–Maxwell scalar field solutions we
focus on analytic investigation of nonlinear electrodynamics scalar field spacetimes, especially the square root
Lagrangian model. The main motivation being to understand whether certain specific signatures of scalar
fields are preserved when nonlinear electrodynamics as an additional source is considered. We show that the
regularity of horizon which is spoiled by scalar field in spherically symmetric static scalar-vacuum spacetimes
is not improved by including nonlinear electrodynamics or other sources satisfying certain condition. We
confirm these findings using test scalar field that enables us to go beyond spherical symmetry.
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I. INTRODUCTION

Solutions to Einstein equations with scalar field source
provide very useful tool for understanding relativity due to
the simplicity of source. Recently, it has become evident
that fields of this type really do exist (Large Hadron
Collider) and play a fundamental role in the standard
model of particle physics. At the same time scalar fields
feature in models of dark energy and dark matter. In
classical general relativity they have been used to study
counter examples to black hole no-hair theorems or the
cosmic censorship hypothesis and in many other areas
as well.
Although studies of strong cosmic censorship (SCC)

started more then 50 years ago [1–3] the field is still active
today and recent results [4] indicate violation of SCC in the
context of highly charged black holes with a positive
cosmological constant based on decay rates of perturba-
tions outside of event horizon. These conclusions were
subsequently probed by studying nonlinear effects numeri-
cally [5] and showing the possibility of extending the
geometry beyond the Cauchy horizon. On the other hand,
in [6] it was shown that charged massive scalar fields in
dynamically formed Reissner–Nordström–de Sitter black
hole lead to SCC preservation.
Investigations related to no-hair theorems have both

similarly long history and active present. Having naked
singularity solution or irregular horizon when scalar field is
present was predicted already by J. E. Chase in 1970—the
exact statement known as a “Chase theorem” [7].

According to it roughly any static spherically symmetric
vacuum solution minimally coupled to massless scalar field
can not have a regular horizon, if there exists any horizon it
would be also the locus of a curvature singularity (see [8]
for generalization including potential for the scalar field).
There is a nice review [9] on scalar no-hair theorems where
they study four dimensional asymptotically flat black holes
with scalar hair in various types of scalar field models
coupled to gravity without additional gauge fields.
Soon after the static scalar field solution of Einstein

equations was rediscovered in [10] (originally derived by
Fisher [11]), R. Penney [12] generalized the scalar vacuum
solution to Einstein Maxwell scalar field solution albeit
considering only electric field. Later, Janis et al. [13]
presented a method for generating Einstein scalar field
and Einstein–Maxwell scalar field solutions out of the
vacuum ones. Other branches of the Einstein–Maxwell
scalar field solutions were later studied in [14]. Subsequent
works [15] give a general class of static cylindrically
symmetric solutions which allows combinations of electric
and magnetic fields. The investigation proceeded to
broaden the class of spacetimes even further and stationary
axially symmetric Einstein–Maxwell scalar spacetimes
were derived and a method to generate such solutions
from the corresponding vacuum ones was presented [16].
Most recently [17], a higher-dimensional generalization of
static solutions for the Einstein–Maxwell system with a
massless scalar field was performed using the Buchdahl
and Janis–Robinson–Winicour transformations [10,13].
Several authors used generating methods to obtain

nonstatic Einstein–Maxwell scalar field solutions [18]. In
order to study cosmic censorship hypothesis violation,*tahamtan@utf.mff.cuni.cz

PHYSICAL REVIEW D 101, 124023 (2020)

2470-0010=2020=101(12)=124023(10) 124023-1 © 2020 American Physical Society

https://orcid.org/0000-0002-3204-7722
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.124023&domain=pdf&date_stamp=2020-06-12
https://doi.org/10.1103/PhysRevD.101.124023
https://doi.org/10.1103/PhysRevD.101.124023
https://doi.org/10.1103/PhysRevD.101.124023
https://doi.org/10.1103/PhysRevD.101.124023


Roberts [19] considered dynamical solutions, especially the
so-called Vaidya–Wyman spacetime. Recently [20,21],
dynamical scalar field spacetime without symmetries was
derived and its physical properties (e.g., presence of
gravitational waves, Bondi mass) were investigated
together with limits to previously known spherically
symmetric solutions. Additionally, violations of cosmic
censorship are analyzed therein.
Lately, investigations of the above mentioned crucial

questions (SCC and no-hair theorem) in general relativity
expanded to cover also nonlinear electrodynamics (NE).
The idea of nonlinear electrodynamics is almost a century
old and was initially developed as a solution to the problem
of divergent field of a point charge (see e.g., [22]) also
giving reasonable self-energy of charged particle. The best-
known and frequently used form of NE was presented
already in 1934 by Born and Infeld [23]. Excellent over-
view of the subject was given in a book by Plebański [24].
Later, other NE models were considered for both solving
the point charge singularity and resolving the spacetime
singularity [25–28].
Recently, perturbation by scalar fields with and without

charge on the background of Born-Infeld-de Sitter black
hole was analyzed in [29]. It was found that when non-
linearity in this specific model of nonlinear electrodynam-
ics becomes very strong there is a possibility of rescuing
SCC. If one checks the limit of strong nonlinearity for the
Born–Infeld type model used therein the resulting form of
NE is ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FμνFμν

p
, with Fμν being electromagnetic tensor.

This gave us the motivation to investigate specifically the
“square root” model of NE with scalar field while focusing
mainly on the Chase theorem extension to such setting.
Note that the square root model has some interesting

properties, that were used extensively in literature.
Originally, this Lagrangian was proposed by Nielsen and
Olesen [30] in a flat spacetime to treat so-called dual string.
Inspired by ’t Hooft’s paper [31] about the importance of
linear potential term for models of permanent confinement,
Gaete and Guendelman [32] showed that this confinement
potential can be generated from square root term in
Lagrangian of gauge theory on Minkowski background.
Subsequently, this approach was generalized to curved
backgrounds and also to modified theories of gravity. A
nice review of recent developments on nonlinear gauge
theory containing square root Lagrangian can be found in
[33]. On the other hand, square root Lagrangian is a
subclass of power Maxwell Lagrangian (−Fs) which
was studied in [34] mainly on curved backgrounds and
new exact solutions in four and higher dimensions were
derived and compared with solutions for other models
of NE.
In this paper we investigate the existence of regular

horizons in static spacetimes with NE by using both exact
analytical calculations and perturbative approach. After
describing the overall setup of the problem (Sec. II) and

briefly mentioning the solutions with single source
(Secs. II A and II B), we briefly revisit the Einstein–
Maxwell scalar field solutions in Sec. II C. Then we derive
explicit solution for the square root model of NE with scalar
field and investigate the relevant properties (in Sec. II D).
Subsequently, we extend the analysis to more general
sources than the specific NE model used before
(Sec. III). Finally, we look at the scalar test field approach
to understand the problem from other perspective (Sec. IV).

II. FIELDS EQUATIONS

We consider the following action, describing a scalar
field minimally coupled to gravity and also NE,

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ∇μφ∇μφþ LðFÞ�; ð2:1Þ

where R is the Ricci scalar for the metric gμν (we use units
in which c ¼ ℏ ¼ 8πG ¼ 1.). The massless scalar field φ is
supposed to be real. LðFÞ is the Lagrangian of the non-
linear electromagnetic field which we assume to be an
arbitrary function of the invariant F ¼ FμνFμν constructed
from a closed Maxwell 2-form Fμν.
Generally, the Lagrangian L of nonlinear electrodynam-

ics is supposed to be a scalar function of the invariants
F ¼ FμνFμν and G ¼ Fμν

�Fμν ¼ 1
2
ϵμναβFμνFαβ (in fact one

should consider onlyG2 to eliminate pseudoscalar nature of
G). Since we are interested in static spherically symmetric
and “pure magnetic field” (the same would apply to “pure
electric field”) solutions the second invariant G ∼E · B
vanishes identically, so we consider only Lagrangians of
the form LðFÞ.
By applying the variation with respect to the metric for

the action (2.1), we get Einstein equations

Gμ
ν ¼ Tμ

ν; ð2:2Þ

where Tμ
ν ¼ SFTμ

ν þ EMTμ
ν. The energy momentum tensor

generated by the scalar field is given by

SFTμν ¼ ∇μφ∇νφ −
1

2
gμνgαβ∇αφ∇βφ: ð2:3Þ

and the scalar field must satisfy corresponding field
equation

□φ ¼ 0; ð2:4Þ

where □ is a standard d’Alembert operator for our
metric (gμν).
The electromagnetic energy momentum tensor is defined

as following

EMTμ
ν ¼

1

2
fδμνL − ðFνλFμλÞLFg; ð2:5Þ
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in which LF ¼ dLðFÞ
dF and superscript EM means electro-

magnetic. Specifically for the Maxwell case L ¼ −F and
LF ¼ −1. The electromagnetic fields are obeying the
(generally) modified Maxwell (NE) field equations. The
sourcefree nonlinear Maxwell equations are given in
the following form

dF ¼ 0; ð2:6Þ

dðLF
�FÞ ¼ 0; ð2:7Þ

in which �F is a dual of electromagnetic two-form F.
We are interested in static spherically symmetric (SSS)

case and for easier comparison with previous results we
consider the metric in the following form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ RðrÞ2dΩ2; ð2:8Þ

where dΩ2 ¼ dθ2 þ sin θ2dϕ2 and subsequently we
assume t, r, θ, ϕ coordinate ordering. The Einstein tensor
with respect to this metric has the following nonzero
components

Gr
r ¼ f

�
R;r

R

�
2

þ R;r

R
f;r −

1

R2
; ð2:9Þ

Gt
t ¼ Gr

r þ 2f
R;rr

R
; ð2:10Þ

Gθ
θ ¼ Gϕ

ϕ ¼ f;rr
2

þ R;r

R
f;r þ

R;rr

R
f; ð2:11Þ

and the Ricci scalar with respect to our metric ansatz
(2.8) is

Ricci ¼ −f;rr −
4

R
ðfR;rÞ;r − 2f

�
R;r

R

�
2

þ 2

R2
: ð2:12Þ

Here, we briefly mentioned all the necessary field
equations which we need for rest of the paper.

A. Scalar field

In this part, we consider scalar-vacuum case where
massless scalar field is minimally coupled to gravity.
This will illustrate the problem scalar field brings in a
simple model. The scalar field is assumed to be a function
of r only (φðrÞ) and the energy momentum tensor gen-
erated by the radial scalar field (2.3) with respect to our
metric ansatz becomes

SFTμ
ν ¼

fφ2
;r

2
diagf−1; 1;−1;−1g: ð2:13Þ

The wave equation (2.4) of scalar field with respect to our
metric (2.8) leads to

fφ;rR2 ¼ const:; ð2:14Þ

which can be integrated to give

φðrÞ ¼ C0

Z
dr
fR2

þ Const:; ð2:15Þ

where C0 and Const. are integration constants and without
loss of generality we can set Const: ¼ 0.
As we mentioned earlier first we want to find the

simplest vacuum solution with scalar field (without having
any other sources) which we already did in our previous
researches [20,21], so we just summarize the results here

fðrÞ ¼ 1;

RðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − χ2

q
; ð2:16Þ

and the scalar field is

φðrÞ ¼ C0

2χ
ln

�
r − χ

rþ χ

�
ð2:17Þ

and Einstein equations give condition C0 ¼
ffiffiffi
2

p
χ. Clearly,

from (2.12) the solution has curvature singularity at r ¼ χ
which represents a naked timelike singularity. This is
caused by diverging scalar field at this position.
When r → ∞ the scalar field is vanishing. The metric

solution is also evidently asymptotically flat but the total
area of spherical surfaces r ¼ const:, t ¼ const: grows
quadratically with coordinate r only far from the central
region while close to the curvature singularity r ¼ χ it
grows just linearly.
This solution coincides with certain parametric limit of

the Janis, Newmann and Winicour (JNW) solution [10] in
the coordinates given in [13]. The JNW solution is two-
parametric and these parameters correspond to strength of
scalar field and Schwarzschild-like mass.

B. Nonlinear electrodynamics

Here, we study one of the simplest models of NE called
square root Lagrangian, namely L ¼ −

ffiffiffiffi
F

p
. Although this

model does not possess Maxwell limit but, as already
mentioned in Introduction, it has its own interesting
properties. Particularly, this Lagrangian represents a strong
field regime of many models of NE (e.g., Born–Infeld).
Note that in square root Lagrangian when considering only
the magnetic field all the energy conditions are satisfied
unlike the case of pure radial electric field.
Since our spacetime is static spherically symmetric,

without loosing generality we assume the following
electromagnetic field two-form

F ¼ Fθϕdθ ∧ dϕ; ð2:18Þ
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where Fθϕ ¼ qm sin θ and qm can be considered as a
magnetic charge. All the modified Maxwell equations
are satisfied trivially. The electromagnetic invariant F ¼
FμνFμν becomes

F ¼ 2q2m
R4

: ð2:19Þ

The energy momentum tensor (2.5) corresponding to L ¼
−

ffiffiffiffi
F

p
and the metric (2.8) is

NETμ
ν ¼ diag

�
−

ffiffiffiffi
F

p

2
;−

ffiffiffiffi
F

p

2
; 0; 0

�
: ð2:20Þ

For finding the solutions from Einstein equations
(Gμ

ν ¼ Tμ
ν), we first solve Gt

t ¼ Tt
t. Before that we

can simplify the equations with respect to the symmetry
in energy momentum tensor Tt

t ¼ Tr
r which leads to

R;rr ¼ 0 ð2:21Þ

in which we can choose R ¼ r. It has been shown in [35]
that the above condition on energy momentum tensor
components leads to such result for any static spherically
symmetric spacetime of four and more dimensions. Now
from (2.10) and (2.20) we obtain

f þ rf;r − α ¼ 0; ð2:22Þ

where α ¼ 1 −
ffiffiffi
2

p
qm, and the solution would be

fðrÞ ¼ αþ C1

r
; ð2:23Þ

where C1 is an integration constant and can be chosen as
−2M, so fðrÞ ¼ α − 2M

r . If qm ¼ 0 then α ¼ 1 and one
would get Schwarzschild solution as should be expected in
the absence of source. Since this specific model of NE does
not have Maxwell limit the obtained solution substantially
differs from Reissner-Nordström spacetime.
Obviously for α positive, fðrÞ has one zero root (r0)

which can be considered as an event horizon. One can
check that at r0 ¼ 2M

α there is no true singularity.
Kretschmann scalar is diverging only at the center, namely
r ¼ 0.
This solution is similar to the solution of geometry

outside the core of so-called global monopole, a spacetime
defect usually considered to be sourced by a self-coupling
triplet of scalar fields whose original Oð3Þ symmetry is
spontaneously broken to Uð1Þ. Global monopole was
discussed in detail and with many applications in literature,
some of the original work can be found in [36–39] and
some recent work by author in [40,41].
Parameter α is related to solid angle deficit/excess which

can be seen by the following transformation

t̃ ¼ ffiffiffi
α

p
t; r̃ ¼ rffiffiffi

α
p ; m̃ ¼ M

α3=2
;

that gives the following line element

ds2 ¼ −
�
1 −

2m̃
r̃

�
dt̃2 þ dr̃2

ð1 − 2m̃
r̃ Þ

þ αr̃2dΩ2: ð2:24Þ

Asymptotically or for m̃ ¼ 0 the relation between area of
r̃ ¼ const:, t̃ ¼ const: surfaces and their proper radius
clearly indicates deficit/excess of solid angle depending
on the value of parameter α. Obviously α should be positive
but can be bigger or smaller than one depending on the sign
of qm. In the standard global monopole model with triplet
of scalar fields only solid angle deficit is possible.
The above metric is not globally asymptotically flat. This

NE model is interesting because it gives the geometry of
global monopole in a much easier way and the solution is
valid everywhere.

C. Einstein Maxwell scalar field

For comparison with the solutions containing both NE
and scalar field source that are derived in the following
sections we present results for the Einstein–Maxwell
system minimally coupled to a scalar field. As already
mentioned in Introduction there are several studies regard-
ing the Einstein–Maxwell scalar field solutions. Most of
them used generating techniques to obtain solutions start-
ing with scalar field spacetimes. For simplicity and easier
comparison with forthcoming NE model (square root) we
consider only purely magnetic field in static spherically
symmetric spacetime.
The electromagnetic field (described by its only non-

vanishing component) and electromagnetic invariant are
the same as for general NE case,

Fθϕ ¼ qm sin θ; F ¼ 2q2m
R4

:

TheMaxwell energy momentum tensor corresponding to
(2.5) and the metric (2.8) is

MaxwellTμ
ν ¼

F
2
diagf−1;−1; 1; 1g: ð2:25Þ

In this case, we proceed similarly to previous papers and
generalize the static vacuum scalar field solution and
assume

RðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − χ1Þðrþ χ2Þ

fðrÞ

s
; ð2:26Þ

with so far undetermined fðrÞ and with two constants
fχ1; χ2g. By using (2.4) we arrive at the scalar field similar
to the vacuum scalar field case (2.17),
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φðrÞ ¼ C0

χ1 þ χ2
ln

�
r − χ1
rþ χ2

�
:

Note that here C0 and fχ1; χ2g are independent constants
unlike in (2.17).
From tt and rr components of Einstein equations [using

(2.2) with (2.13) and (2.25)], Gt
t − Gr

r ¼ Tt
t − Tr

r, we
can solve for the metric function fðrÞ in the following form

fðrÞ ¼
16μ2ðχ1 þ χ2Þ2ðr−χ1rþχ2

Þμ
½ðr−χ1rþχ2

ÞμC1 − C2�2
; ð2:27Þ

where μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

0

ðχ1þχ2Þ2

r
, so 0 < μ ≤ 1. It is straightfor-

ward to check that the horizon at r ¼ χ1 is singular (result
known from previous studies of the solution). Without
losing generality one can consider χ1 ¼ χ2 ¼ χ and per-
form simple shift of radial coordinate which we assume
further. The rest of the Einstein equations are constraints for
the integration constants, namely C1 and C2. They are
bound to satisfy

C1 ¼
4q2m
C2

:

This solution (2.27) corresponds to the one obtained in
[12] only written in different notation for the constants.
Also, using simple relations for hyperbolic functions that
are used to write the solution in [15], one can show that our
solution corresponds to theirs. Note that in [15], they
obtained the solution representing pure magnetic field
using the duality between electric and magnetic field. As
we will discuss subsequently, our solution has static
vacuum solution limit. For solution discussed in [13] it
was not possible to recover the static vacuum solution
because one cannot make both electromagnetic and scalar
fields vanish simultaneously—the solution in [13] does not
contain a branch enabling such limit.
It is clear that if qm vanishes we obtain static vacuum

scalar field solution derived in [10] provided we demand
C2 ¼ 4χ (needed in order to have correct Schwarzschild
limit if we additionally remove scalar field by set-
ting C0 ¼ 0).
If C0 ¼ 0 which means vanishing scalar field, we can

introduce a new radial coordinate r̂ ¼ rðC1−C2Þ−χðC1þC2Þ
4χ to

recover Reissner-Nordström solution as one would expect

fðr̂Þ ¼ 1 −
2M
r̂

þ q2m
r̂2

:

Above, we have introduced a new parameter M describing
asymptotic mass with the following relation with the
original constant C2

4q2m
C2

þ C2 ¼ −4M:

By further removing electromagnetic field by setting
qm ¼ 0 we immediately recover Schwarzschild solution.
In both limiting procedures (first qm → 0 followed by

C0 → 0, or in reverse order) we arrive at the original
vacuum solution—the Schwarzschild black hole.

D. Scalar field and square root Lagrangian

In this section we present an explicit solution for already
considered NE model (square root) additionally minimally
coupled to a massless scalar field. Note that the solution
without scalar field obtained in Sec. II B was a black hole
with regular horizon so this model can serve as a test for the
effects of scalar field on NE spacetimes (thereby probing
the extended validity of the “Chase theorem”).
We start to solve the coupled system by considering tt

and rr components of Einstein equations (2.2), namely
Gt

t −Gr
r ¼ Tt

t − Tr
r. By inserting from (2.9), (2.10),

(2.13) and (2.20) to this equation we immediately obtain

φ2
;r ¼ −

2R;rr

R
: ð2:28Þ

From the above equation and (2.15) we are able to find f in
terms of R

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

C2
0

2R3R;rr

s
: ð2:29Þ

The rest of the Einstein equations will constrain the form
of R. As we mentioned before, our model of NE is L ¼
−

ffiffiffiffi
F

p
with the energy momentum tensor (2.20). From

Gt
t − ðNETt

t þ SFTt
tÞ ¼ 0, we get

f

�
R;r

R

�
2

þ R;r

R
f;r −

1

R2
þ f

R;rr

R
þ qmffiffiffi

2
p 1

R2
¼ 0; ð2:30Þ

which together with (2.29) gives the following expressions
for R, f and from (2.28) for φ

RðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2ðrþ C̃1Þðr− C̃2Þ−C2

0

q
×expð−ΩðrÞÞ; ð2:31Þ

fðrÞ ¼ −
e2ΩðrÞ

β
ffiffiffi
2

p ; ð2:32Þ

φðrÞ ¼ 2
ffiffiffi
2

p
C0

βðC̃1 þ C̃2Þ
ΩðrÞ; ð2:33Þ

where C̃1 and C̃2 are integration constants and we intro-
duced parameters β, ρ and a function ΩðrÞ in the following
way
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β ¼ ðqm −
ffiffiffi
2

p
Þ; ð2:34Þ

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2ðC̃1 þ C̃2Þ2 þ 4C2

0

q
; ð2:35Þ

ΩðrÞ ¼ βðC̃1 þ C̃2Þ
ρ

arcCoth
�
βð2rþ C̃1 − C̃2Þ

ρ

�
ð2:36Þ

and β should be negative for preserving the metric
signature.
After presenting the explicit solution above, we will turn

our attention to the investigation of existence of (event)
horizon. Since the spacetime is static spherically symmetric
one can check for zeros of the lapse function f. From
(2.32), it is sufficient thatΩ → −∞. Since β is negative, the
only way to achieve this is to assume C̃1 þ C̃2 ≤ 0 (we are
constrained to negative branch of arcCoth). The argument
of arcCoth should then be −1 which happens for the
following value of r

r0 ¼
1

2
ðC̃2 − C̃1 − ρ=βÞ:

As is well-known, it is possible to write arcCothðxÞ in
logarithmic form when jxj > 1. Using that, first we write Ω
in terms of r0 as below

ΩðrÞ ¼ βðC̃1 þ C̃2Þ
2ρ

ln

�
r − r0
r − r̃0

�
; ð2:37Þ

where r̃0 ¼ r0 þ ρ=β. After some simplifications, the
Eqs. (2.31) and (2.32) become

RðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2ðr − r0Þðr − r̃0Þ

q �
r − r̃0
r − r0

�ν
2

; ð2:38Þ

fðrÞ ¼ −
1

β
ffiffiffi
2

p
�
r − r0
r − r̃0

�
ν

; ð2:39Þ

where ν ¼ jβðC̃1þC̃2Þj
ρ ≥ 0.

In this compact form it is clear that f is vanishing at
r ¼ r0 but the behavior of R driven by the power of ðr − r0Þ
which is ν−1

2
. Depending on whether ν⪋1, R would be zero,

finite or diverge. Considering the definition for ρ from
(2.35), it is clear that ν < 1 if C0 ≠ 0 (nontrivial scalar
field), so for r ¼ r0 the function R is vanishing.
Note that since β is negative, r0 > r̃0. So at r0 there is an

outermost horizon and it is potentially an event horizon but
we need to see the behavior of Ricci scalar at r ¼ r0 to
determine its regularity. From (2.12)

Ricci ∼ ðr − r0Þν−2

and since ν < 1 the Ricci Scalar at r ¼ r0 is clearly
diverging.

So in our solution, the event horizon is also a true
singularity which confirms the role of scalar field in
destroying horizon regularity even in this NE model.
Thus our spacetime contains a null singularity along the
horizon position which means that it is not possible to
extend the spacetime and perform any analysis of SCC. On
the other hand, since this is the stationary state of geometry
it shows that the no-hair theorem is valid in this case as well
since we have not found black hole spacetime with both
nongravitational fields being nontrivial.
The scalar field (2.33) becomes

φðrÞ ¼
ffiffiffi
2

p
C0

ρ
ln

�
r − r0
r − r̃0

�
ð2:40Þ

and it is clear that at r ¼ r0, the scalar field is diverging as
well and the same applies to electromagnetic invariant
(2.19) and therefore to NE energy momentum tensor (2.20).
The obtained solution, (2.38) and (2.39), is a NE

generalization of the Janis, Newmann and Winicour sol-
ution [10] and the original solution is recovered for qm ¼ 0

while as well setting C̃1 ¼ C̃2.
If we consider that the scalar field vanishes, C0 ¼ 0, then

necessarily ν ¼ 1 and the solution in (2.38) and (2.39) will
be equivalent to (2.23) upon trivial changes in coordinates
and constants—such as R → βðrþ C̃1Þ, introducing α ¼
−β

ffiffiffi
2

p
and redefining additional constants to obtain proper

mass parameter).
If we assume C̃1 and C̃2 are zero then the form of the

metric functions is simpler

RðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2r2 − C2

0

q
; ð2:41Þ

fðrÞ ¼ −
1

β
ffiffiffi
2

p ; ð2:42Þ

leading to timelike naked singularity. When qm in β
vanishes then the solution becomes equivalent to (2.16)
with some trivial redefinition of coordinate r.
Both the general metric solution and its subcases with

nontrivial scalar field do not have any regular horizon.
Although there are clear differences between Maxwell and
square root Lagrangian solutions with scalar field they both
contain singular horizon or naked singularity due to the
scalar field presence. Direct comparison of the square root
model with Maxwell case is difficult since this NE model
does not have Maxwell weak field limit or similar strong
field behavior. However, from the form of function RðrÞ in
both cases [(2.38) and (2.26)] we see that the behavior of
areal radii is similar (the same applies to the form of scalar
fields) while there is substantial difference in the form of
metric function fðrÞ [see (2.39) and (2.27)]. Note that there
is profound difference already for solutions without scalar
field as Square root model metric (2.24) only possesses
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single horizon compared to Reissner–Nordström solution
with two and global asymptotics varies as well.
Nevertheless, the scalar field produces singular horizons
in both cases.

III. NO BLACK HOLE SOLUTIONS

For highly symmetric static spacetime to represent a
black hole its lapse function should have at least one root.
But this root should not be a true singularity at the same
time. In other words, at least the Ricci scalar and
Kretschmann scalar at this root should not diverge. Here
we consider a presence of horizon for larger class of
sources and the influence scalar field exerts in such
situation in order to probe the Chase theorem extension.
For this purpose, we consider as before the radial scalar

field and additionally any other kind of source with the
condition OtherTt

t ¼ OtherTr
r (e.g., satisfied by NE). If

OtherTμ
ν was the only source, this condition would auto-

matically imply gttgrr ¼ −1 according to [35]. However,
here the total energy momentum tensor does not satisfy
such constraint. Before starting the analysis we choose a
new coordinate system which makes the subsequent
derivation easier. Therefore we start with the following
metric

ds2 ¼ −fðrÞdt2 þ hðrÞ
fðrÞ dr

2 þ r2dΩ2: ð3:1Þ

The metric density isffiffiffiffiffiffi
−g

p ¼
ffiffiffi
h

p
r2 sin θ;

which constrains the metric function h to be positive.
By following the same procedure as before, using scalar

field wave equation (2.4) and Gt
t −Gr

r ¼ Tt
t − Tr

r field
equations of Einstein equations (2.2), we find the following
expression for the scalar field and the lapse function,

φðrÞ ¼
Z ffiffiffiffiffiffi

h;r
rh

r
dr; ð3:2Þ

f ¼ f0hffiffiffiffiffiffiffiffiffiffi
r3h;r

q ; ð3:3Þ

where f0 is an integration constant. Ricci Scalar for this
metric (3.1) is

Ricci ¼ 2

r2
þ f0

4
ffiffiffiffiffiffiffiffiffiffi
r5h;r

q �
2r

�
h;r
h

�
2

þ h;r − rh;rr
h

þ 1

rðh;rÞ2
½r2ð2ðh;rrrÞh;r − 3ðh;rrÞ2Þ þ ðrh;r2Þ;r�

�
:

ð3:4Þ
When the lapse function f is zero (which occurs when
h ¼ 0), there is a possibility to have horizon(s). So we are
assuming that at r ¼ r0 there is at least one zero for h and

the first derivative of h with respect to r at this point is
nonzero and finite. As one can see from Ricci scalar (3.4)
vanishing h means diverging curvature. Even if we assume
the expression in the box containing h in denominator to
vanish identically it leads to more problems because from

2r

�
h;r
h

�
2

þ h;r − rh;rr
h

¼ 0

we obtain the following solution for h

h ¼ −
h0

r2 þ h1
;

where h0 and h1 are integration constants. Ruling out
purely imaginary solution for f, the constant h0 must be
positive which makes the metric density imaginary. Even
without caring about reality conditions this form of h
makes the solution automatically a naked singularity one
since it leads to f ∼ 1=r2.
All these discussions show that in the presence of

minimally coupled massless scalar field in addition to
the other type of source satisfying OtherTt

t ¼ OtherTr
r

(potentially even those forms of NE that remove curvature
singularities thus creating so-called regular black holes) it is
impossible to have black hole solutions with regular
horizon.

IV. TEST FIELD

In this section we use a test scalar field approach to learn
more about the scalar fields behavior in the vicinity of
horizon. First, inspired by [9] where the comparison
between test electric field (in Maxwell theory) and a test
scalar field on a black hole spacetime was performed, we
apply this reasoning to NE theory instead of sourcefree
Maxwell theory. Subsequently, we investigate the scalar
field wave equation on a generic black hole spacetime
taking into account complete set of solutions, not restricting
ourselves to purely spherically symmetric ones.

A. Difference between electric and scalar
field as a test fields

Since Klein–Gordon equation and Maxwell (also modi-
fied Maxwell) equations for potential are similar it is worth
it to see what is the difference between them which leads to
the result that the Maxwell field obeys a Gauss law and
scalar field does not.
For showing the difference between the electric and

scalar fields on fixed background (2.8) (assuming R ¼ r
which is always possible when Tt

t ¼ Tr
r according to

[35]), we consider a test, spherically symmetric electro-
magnetic field described by the gauge potential one-form

A ¼ ϕðrÞdt; ð4:1Þ
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then F ¼ −ϕ;rdt ∧ dr. From (2.6), we get

∂rðr2 sin θLFϕ;rÞ ¼ 0 → ϕ;r ¼
QE

r2LF
: ð4:2Þ

Note that in Maxwell theory LF ¼ −1. One can write the
above equation in the following form

∂rðr2 sin θϕ;rÞ ¼ −r2 sin θϕ;rðln jLFjÞ;r; ð4:3Þ

which looks like ordinary Maxwell equation with source.
In the case of radial scalar field, Klein-Gordon equa-

tion (2.4) simplifies into

∂rðr2 sin θfðrÞφ;rÞ ¼ 0 → φ;r ¼
QSF

r2fðrÞ ; ð4:4Þ

with QSF being integration constant with the interpretation
of scalar charge. It is possible to write the above equa-
tion (4.4) in similar way as the NE equation (4.3) in source
form, that is

∂rðr2 sin θφ;rÞ ¼ −r2 sin θφ;rðln jfjÞ;r: ð4:5Þ

From (4.4) it is clear that at the event horizon which
corresponds to fðr0Þ ¼ 0, the scalar field is diverging while
in case of electromagnetic field (4.2) the fields are regular
on the horizon both in the Maxwell case and for generic NE
model case. The different behavior of these two fields is
due to the presence of lapse function in scalar field equation
in contrast to electromagnetic field equation. Note that in
denominator of (4.2) there is LF (which is some function in
F). In general, NE models are used to remove any kind of
singularity in electric field and as a result in F which in turn
means LF on the horizon should not vanish. So considering
a special model of NE which would provide vanishing LF
on the horizon and thus behave effectively similarly to
scalar field [compare (4.3) and (4.5)] goes counter to the
standard consideration in NE models and cannot be
reasonably justified. In the case of scalar field on the other
hand this behavior is pretty robust and not dependent on
specific fine-tuning of model [8]. Still one can ask if such a
specific NE model with divergence on the horizon might
counter the scalar field divergence. However, looking at
their corresponding energy momentum tensors (2.3), (2.5)
and considering that LFjr¼r0 ¼ 0 at the same time one can
see that it is not possible to cancel the role of scalar field in
causing horizon irregularity even by the fine-tuning when
the backreaction on geometry is considered.

B. Wave equation for black hole solutions
close to event horizon

We have studied Chase theorem in exact solutions with
other sources in Secs. II D and III with certain limitations
(spherically symmetric scalar field specific form of NE or

with additional sources satisfying certain symmetry of
energy momentum tensor). Now, we will study test scalar
field without the assumption of symmetry for completely
generic case on the background of SSS geometry to
confirm our previous results. This study is in line with
the analysis performed already by Chase in [7] for
Schwarzschild background.
We consider a scalar perturbation obeying the

Klein-Gordon equation □Ψðt; r; θ;ϕÞ ¼ 0 for the static
spherically symmetric geometry (2.8) with R ¼ r (always
possible for sources satisfying Tt

t ¼ Tr
r [35])

fΨ;rr þ
�
f;r þ

2f
r

�
Ψ;r −

Ψ;tt

f
;

þ 1

r2

�
Ψ;θθ þ cot θΨ;θ þ

Ψ;ϕϕ

sin2θ

�
¼ 0: ð4:6Þ

For the above equation one can use the symmetry of
background and employ usual separation of variables

Ψðt; r; θ;ϕÞ ¼ e�iωt ψðrÞ
r

Ym
l ðθ;ϕÞ; ð4:7Þ

where Ym
l is the harmonic function on the unit 2-sphere.

This kind of separation of variables (identical to the one in
[7]) is selected since it allows to study static situation as
well. On the other hand, in the studies of quasi-normal
modes a decomposition based on null coordinates is
preferable since the boundary conditions at horizon and
infinity are straightforward to impose.
With this assumption we would have the radial equation

as follows

fψ ;rr þ f;rψ ;r −
�
lðlþ 1Þ

r2
−
ω2

f
þ f;r

r

�
ψ ¼ 0: ð4:8Þ

Since we are interested in perturbation around non-degen-
erate horizon, we assume

f ¼ f0ðr − r0Þ þOððr − r0Þ2Þ;

where f0 is a positive constant (e.g., f0 ¼ 1
2m in

Schwarzschild). Upon substituting into (4.8) we obtain

f0ðr − r0Þψ ;rr þ f0ψ ;r

−
�
lðlþ 1Þ

r2
−

ω2

f0ðr − r0Þ
þ f0

r

�
ψ ¼ 0: ð4:9Þ

The solution for the above equation is of the form

ψ ¼ ðr − r0Þ
−iω
f0

�
ψ0rn1 2F1

�
a1; b1; n1;

r
r0

�

þψ1rn2 2F1

�
a2; b2; n2;

r
r0

��
; ð4:10Þ
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with 2F1 being hypergeometric function. And ai, bi, ni
where i ¼ 1, 2 are the parameters defined as following

ai ¼
ð1 − σiÞ

2
−
iω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f20 − ω2

p
f0

;

bi ¼
ð1 − σiÞ

2
−
iωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f20 − ω2

p
f0

;

ni ¼ 1 − σi;

σi ¼ ð−1Þiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4lðlþ 1Þ
f0r0

s
; ð4:11Þ

these parameters clearly satisfy the following relation

ni − ðai þ biÞ ¼
2iω
f0

: ð4:12Þ

The solution contains a factor ðr − r0Þ
−iω
f0 leading to

divergence of the derivative of the following form ψ ;r ∼
ðr − r0Þ−1 because the asymptotic behavior of hypergeo-
metric function around r0 (or in other words around

r
r0
¼ 1)

[42] has the following form

2F1

�
ai; bi; ni;

r
r0

�

∝ D0ðr0 − rÞ2iωf0 f1þD1ðr − r0Þ þOðr − r0Þ2g
þD2f1þD3ðr − r0Þ þOðr − r0Þ2g: ð4:13Þ

All these Dj are constant in terms of ai, bi, ni. This in turn
leads to divergence in the stress energy momentum tensor
of the scalar field (2.13) which shows that generic test
scalar field blows up on the horizon. One can take this as a
confirmation of the Chase theorem or as an indication of the
need to study this problem including the backreaction of the
scalar field on the geometry as we did in previous parts.
The above analysis seemingly fails for ω ¼ 0. However,

if we consider ω ¼ 0 in the formula (4.12) for relation
between parameters (4.11) we get zero on the right-hand
side and moreover all parameters become real. Since we are
looking for the limit when we get close to horizon r0 we
will check the asymptotic behavior of hypergeometric
function close to one which attains modified form due to
the simplification in parameters

2F1

�
ai; bi; ðai þ biÞ;

r
r0

�

∝ D̃0

�
log

�
1 −

r
r0

�
þ D̃1

�
f1þOðr − r0Þg:

This again leads to divergence in scalar field which is
moreover consistent with the logarithmic behavior in (2.40)
which should be the case for static mode.

V. CONCLUSION AND FINAL REMARKS

The role of scalar field is so dominant that it can effect
the spacetime solution drastically by turning it from black
hole solution into naked singularity or causing the horizon
to become singular. We have studied this process in the
presence of additional fields (especially NE field) in several
ways. In order to have comparison between the square root
model and Maxwell theory, first we revisited Einstein–
Maxwell scalar field solution. In case of NE model with
Lagrangian ∼

ffiffiffiffi
F

p
which captures the strong field regime of

many NE models (e.g., Born–Infeld) we have derived
solution which generalizes that of Janis–Newman–
Winicour and shows irregular horizon. Although, the
solution differs substantially from the Maxwell scalar field
solution the regularity of horizon is not improved. For
vanishing scalar field the solution represents geometry of
so-called global monopole which in this case can have both
deficit and excess solid angle.
Subsequently, we have shown that regular horizon

absence features in much larger class of additional sources
when scalar field is present. Finally, we have studied the
horizon regularity in the test field approximation which
brings better understanding of the scalar field influence and
enables treatment of scalar fields that are not spherically
symmetric. The test scalar field approach confirmed the
previous results.
All the results are in agreement with Chase theorem and

show that there are no static black holes with regular
horizon in these models. This shows that no-hair theorem
should be valid in such a scenarios.
The exact solutions with scalar field studied here posses

either null singularity or in special cases a timelike one.
This means that they either violate weak cosmic censorship
or are infinitely close to it. Since in generic cases with NE
one can not pass the exterior horizon because it is singular it
is not possible to study processes close to potential Cauchy
horizon and thereby strong cosmic censorship.
In future, we will study massive scalar field with

potentials to understand if the behavior is as generic as
in the case of scalar-vacuum studied in [8]. For under-
standing SCC one should study dynamical solutions with
electromagnetic and scalar fields.
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